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J .  Phys.: Condensed Matter. I(1989) 3691-3694. Printedin the UK 

COMMENT 

Remarks on the comments on the diffusion of Ni and Ge 
in Ni made by Hadjicontis and co-workers 

G Neumannt and D L Bekei 
t Institut fur Physikalische Chemie, Freie Universitat Berlin, Takustrasse 3, 
1000 Berlin 33, Federal Republic of Germany 
$ Cepartment of Solid State Physics, Lajos Kossuth University, H 4010 Debrecen, 
PO Box 2 ,  Hungary 

Received 8 December 1988 

Abstract. g = cBR is a good approximation for the temperature function of the diffusion 
coefficient P .  B ( T ) R ( T ) ,  however, does not explain the entire curvature of In P against 
l/Tand thus is no proof for the contribution of only one defect to P. The application of this 
relation to the impurity diffusion leads to an additional error due to an incorrect assumption 
with respect to the impurity diffusion entropy. 

1. Introduction 

Varotsos et a1 (1978) have proposed an empirical correlation 

D ( T )  = a2vfexp[ - cB(T)Q(T) / k ,T]  (1) 
which describes the temperature function of the diffusion coefficient D with those of the 
bulk modulus B and the atomic volume S Z .  c is assumed to be an empirical temperature- 
independent constant. n is the lattice constant, v is a lattice frequency associated with 
the diffusion jump and f is the correlation factor. The application to self-diffusion 
(Varotsos and Alexopoulos 1980) and impurity diffusion in metals (Alexopoulos and 
Varotsos 1981) reveals that equation (1) is a good first approximation. 

In general the Arrhenius plot of D (In D against 1 /T )  is more or less curved. This 
curvature can be explained by the competition of at least two diffusion mechanisms (two- 
defect model) (see, e.g., Mehrer 1978, Neumann 1989) or by apronounced temperature 
dependence of the diffusion energies and entropies (one-defect model) (Gilder and 
Lazarus 1975). 

If the temperature function of BQ is non-linear, this leads to a temperature depen- 
dence of the diffusion enthalpy h: 

h = cBQ - cTd(BQ)/dT.  (2) 

According to equation (2) in most cases h increases with rising temperature. This was 
considered as a proof for the existence of only one defect contributing to D. It can be 
demonstrated, however, that at least for FCC metals the temperature dependence of h 
according to equation (2) underestimates the curvature of In D against 1/T.  

0935-8984/89/233691 + 04 $02.50 @ 1989 IOP Publishing Ltd 3691 



3692 Comment 

In the simplest manner a temperature dependence of enthalpy h and entropy s can 
be expressed by (see, e.g., Seeger and Mehrer 1970) 

h( T )  = h( TO) + 2akB ( T  - To) 

s( T )  = s( T o )  + 2ak,  In( TIT,) 

(3a) 

(3b) 

where To is a reference temperature. If two defects are contributing to the diffusivity, D 
is given by 

D = D1 + D, = DY exp(-hl/kBT) + D: exp(-h,/kBT). (4) 

From the measured temperature function of D a distinction between the one-defect and 
the two-defect model is not possible, as the resulting standard deviation is nearly equal 
for the fitting procedures according to equation (4) and D = a2vfexp[ -g( T ) / k , T ]  with 
h( T )  and s( T )  according to equation (3), respectively. 

2. The application of the BKl model to self-diffusion and impurity diffusion in metals 

Recently, Hadjicontis et a1 (1988) have applied equation (1) to describe the diffusivity 
of Ni and Ge in Ni. For the calculation of D( T )  the bulk moduli measured by Alers et a1 
(1960) were used. The calculated D( T )  are compared with self-diffusion coefficients 
measured by Bakker (1968) and Maier et a1 (1976) and for Ge diffusion in Ni with 
those measured by Mantl et a1 (1983). Hadjicontis et a1 (1988) assumed a temperature- 
independent value of d(BQ)/d T equal to -3.6 X J K-'. The resulting temp- 
erature-independent diffusion energies are 3.00 eV and 2.77 eV for Ni and Ge diffusion 
in Ni, respectively. As the measured diffusion energies are 2.74 eV for Ge  in Ni and 
range from 2.91 to 3.04 eV according to the estimation of Maier eta1 (1976), Hadjicontis 
et a1 (1988) conclude favourable agreement between theory and experiment. 

The analysis of the self-diffusion coefficients of Ni according to equation (4) (Neu- 
mann and Tolle 1986), however, leads to an increase in the effective diffusion enthalpy 
hefffrom 2.87 eV at 900 K to 3.13 eV at 1700 K (table 1). According to equation (3) this 
corresponds to a = 1.9, which is much larger than the expected upper limit of about 0.2 
(see, e.g., Peterson 1978). In reality, the temperature function of BQ corresponds to a 
temperature gradient a(BQ)/d  T ranging from about -3.4 x J K-' at 900 K to 
about -3.8 X J K-lat  1700 K. Thisleadsto atemperaturedependenceofh, which, 
however, is too small to explain the entire curvature of In D against l /Tfor  the Ni self- 
diffusion (see table 1). 

The situation is similar for self-diffusion in copper, where the temperature depen- 
dence of h calculated from BQ (Varotsos and Alexopoulos 1980) is distinctly smaller than 
that of heff obtained from the two-exponential fit according to equation (4) (Neumann and 
Tolle 1986) (see table 1). 

For Ge diffusion in Ni the Arrhenius plot is linear over more than six orders of 
magnitude in D. This corresponds to a temperature-independent diffusion energy in 
agreement with the result obtained by Hadjicontis et a1 (1988). The more realistic T- 
function of d (BQ) /d  T ,  however, suggests an increase in h with increasing T (see table 
l ) ,  which is in contrast with the experimental result. The observed linearity of In D 
against 1/T, on the contrary, is in agreement with the fact that for rapidly diffusing 
impurities the upward curvature of In D against l/T(resulting from Dz/D > 0 or a > 0) 
is nearly cancelled by the downward curvature of lnfagainst 1/T (Neumann 1987). 
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Table 1. Comparison of the diffusion energies calculated from g = cBR and from the two- 
exponential fit. 

Ni in Ni 
Ni in Ni 
Ni in Ni 
CY 

Ge in Ni 
Ge in Ni 
Ge in Ni 
(Y 

Cu in Cu 
Cu in Cu 
Cu in Cu 
(Y 

900 2.965" 
1300 3.00 
1700 3.045 

0.6 

900 2.73" 
1300 2.77 
1700 2.81 

0.54 

700 2.134d 
1000 2.135 
1300 2.155 

0.2 

2.87b 
2.89 
3.13 
1.9 

2.74' 
2.74 
2.74 
0 

2.065b 
2.14 
2.24 
1.7 

a hBQ for Ni and Ge in Ni calculated assuming an increase in a(BR)/dTfrom -3.4 x 
to -3.8 X J K-'.  

According to Neumann and Tolle (1986). 
According to Mantl et a1 (1983). 
According to Varotsos and Alexopoulos (1980). 

In addition to the objections against the connection between the curvature of In D 
against 1/Tand the T-function of BQ and the disregard of the T-dependence off, there 
are further important objections against the applicability of 

g = cBQ ( 5 )  

to the impurity diffusion in metals (Neumann 1986, Neumann and Beke 1989). Alex- 
opoulos and Varotsos (1981) have assumed that equation ( 5 )  is valid for self-diffusion 
as well as for impurity diffusion in that merely different values of c describe the respective 
g(T) .  This assumption suggests that s/h is a constant: 

s/h = [8(BQ)/tIT]/[BQ - T a ( B Q ) / d T ]  = K (6) 

which is independent of whether vacancy formation or migration, self-diffusion or 
impurity diffusion is considered. In particular, this means that 

A s = K A h  (7) 

with h = h, - h, and s = s, - s, (the subscripts i and s refer to impurity diffusion and self- 
diffusion, respectively). As the frequency factor is given by Do = a2vfexp(s/kB), this 
means that 

ln [ (D~/D~)(m, /m,) ' /2 ]  = AS/kB = K Ah/kB (8) 

on the assumptions that f, = f, and v , / v ,  = (m,/m,)'/* (m, and m, are the matrix atom 
mass and the impurity mass, respectively) and that As can be expressed by equation (7). 

The proportionality between ln(D:ml"') and h, is well known. The gradient, how- 
ever, is larger than K/k,, namely about 2K/kB (Pelleg 1966). This discrepancy was 
explained in detail by Neumann and Hirschwald (1974) and Neumann (1986). 
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Recently, Grammatikakis et al(1988) have applied equation (8) to impurity diffusion 
in aluminium. They fitted ln[(D~/D~)(m,/m,)1/2]  = A, against h, with the slope K / k B  
obtained from equation (6). The fact that this slope is wrong can be easily demonstrated. 
A = 0 corresponds to h, = h,. According to their figure 1, A = 0 leads to h, = 0.5 eV 
instead of the inserted experimental value of h, = 1.47 eV (and D: = 1.71 cm2 s-') 
(Lundy and Murdock 1962). The line with the slope K/kB passing through h = 1.47 eV 
at A = 0 does not fit any of the experimental data points A, ,  h,. 

3. Conclusions 

The present considerations lead to the following conclusions: g = cBQ is an acceptable 
approximation for the description of the temperature function of D for self-diffusion in 
metals. This also holds for impurity diffusion, although the temperature dependence of 
the correlation factor is disregarded and although the assumption that s/h = K is valid 
for self-diffusion as well as for impurity diffusion is wrong. The main consequence 
suggested by this model, namely that the good approximation of D ( T )  is a proof of the 
one-defect model, however, must be rejected. 

References 

Alers G A,  Neighbours J R and Sato H 1960 J .  Phys. Chem. Solids 13 40 
Alexopoulos K and Varotsos P 1981 Phys. Rev. B 24 3606 
Bakker H 1968 Phys. Status Solidi 28 569 
Gilder H M and Lazarus D 1975 Phys. Rev. B 11 4916 
Grammatikakis J ,  Eftaxias K and Hadjicontis V 1988 J .  Phys. Chem. Solids 49 1275 
Hadjicontis V, Varotsos C and Eftaxias K 1988 J .  Phys. F: Met. Phys. 18 1635 
Lundy T S and Murdock J F 1962 J .  Appl. Phys. 33 1671 
Maier K,  Mehrer H ,  Lessmann E and Schiile W 1976 Phys. Status Solidi b 78 689 
Mantl S, Rothman S J ,  Nowicki L J and Lerner J L 1983 J .  Phys. F: Met. Phys. 13 1441 
Mehrer H 1978 J .  Nucl. Mater. 69-70 38 
Neumann G 1986 Phys. Status Solidi b 137 57 
- 1987 Phys. Status Solidi b 144 329 
- 1989 Mater. Sci. Forum at press 
Neumann G and Beke D L 1989 Z. Metallk. SO at press 
Neumanh G and Hirschwald W 1974 Z.  Phys. Chem., NF89 309 
Neumann G and Tolle V 1986 Phil. Mag. A 54 619 
Pelleg J 1966 Acta Metall. 14 229 
Peterson N L 1978 Comment. Solid State Phys. 8 107 
Seeger A and Mehrer H 1970 Vucancies and Interstitials in Metals ed. A Seeger, D Schumacher, W Schilling 

Varotsos P and Alexopoulos K 1980 Phys. Rev. B 22 3130 
Varotsos P, Ludwig W and Alexopoulos K 1978 Phys. Rev. B 18 2683 

and J Diehl (Amsterdam: North-Holland) p 1 


